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Abstract
The temperature dependence of the penetration depth in the presence of
nonlocality and impurity in d-wave superconductors is calculated. It is
shown that the penetration depth is proportional to the relaxation time at low
temperatures, where the nonlocal effects are in fact completely masked by
impurities.

1. Introduction

Measurements of the electromagnetic penetration depth λ at low temperatures are beginning
to yield a consistent picture of the pairing state of the high-temperature superconductors
(HTSC). Until recently it had been thought that the most credible data exhibited an exponential
temperature dependence at low temperatures, but a reanalysis of the data of Fiory et al [1]
clearly showed that the deviation �λ from the zero-temperature value λ(0) was quadratic in
temperature.

In conventional s-wave superconductors, the deviation �λ(T ) exhibits activated
behaviour, i.e. �λ(T ) ∝ exp(−�

T ) (throughout this paper we use units in which kB = h̄ = 1),
reflecting the existence of the isotropic BCS energy gap � at the Fermi surface [2]. In
contrast, in a pure d-wave superconductor, or any other unconventional superconductor with
nodes in the gap, the London (local) penetration depth varies linearly with the temperature,
i.e. �λ(T ) ∝ T [2].

However, below a certain sample temperature T ∗, the linear T -dependence of the
penetration depth in HTSC crosses over to a higher-power law, most probably a T 2-law. In the
d-wave scenario of HTSC, the origin of the �λ(T ) ∝ T 2 dependence has been explained by
the presence of nonmagnetic impurities, which scatter in the unitary limit [3]. In this strong-
scattering limit a small amount of impurity can induce a finite residual density of states at the
Fermi level, which is sufficient to change the temperature dependence of the penetration depth
from T to T 2, without significantly lowering the transition temperature.

0953-8984/03/264577+06$30.00 © 2003 IOP Publishing Ltd Printed in the UK 4577

http://stacks.iop.org/JPhysCM/15/4577


4578 M A Shahzamanian and H Yavary

Besides impurities, at very low temperatures nonlocality may play an important role in
the T 2-dependence of �λ(T ). Thus nonlocality represents a second mechanism that leads to
a T 2-dependence of the penetration depth sufficiently close to T = 0 K.

If the electron impurity scattering is treated in the Born approximation, the quasi-particle
relaxation time at low temperature in superconducting states with nodes of the gap on the Fermi
surface varies as the inverse power of the temperature T . This behaviour of the relaxation
time was shown to give rise to transport coefficients that are in qualitative disagreement
with experiments [4]. Schmitt et al [5] considered impurity scattering in the unitarity limit
and showed that close to resonance and at low energies, τ is constant, corresponding to
�λ(T ) ∝ T 2, which is in agreement with experiments [6, 10, 11].

In this paper we calculate �λ(T ) in the presence of nonlocality and impurity. We show that
at very low temperatures these effects play an important role in the electromagnetic response
of a d-wave superconductor, leading to �λ(T ) ∝ T 2, and in the presence of nonlocality
and impurity the nonlocal effects become masked by the presence of impurities. In the limit
τ → ∞ our results are the same as those of Kosztin and Leggett [8].

2. Formulation of the problem

To demonstrate the effects of nonlocality and impurity in �λ we calculate the electromagnetic
response tensor Qαβ(q), which relates the current density �J to an applied vector potential �A.
The electromagnetic response of a superconductor to an electromagnetic wave is given by [2]

Jα = − Ne2

m
Qαβ(q)Aβ (1)

where

Qαβ(q) = δαβ +
2T

(2π)3 Nm

∑
ω

∫
�p′
α d3 �p′ �	(1)

β (p′
+, p′

−). (2)

p′± = p′ ± q
2 , and �	(1)(p+, p−) is the Fourier component

�	(1)(x − y, y − x ′) = T 2

(2π)6

∑
ω+,ω−

∫ ∫
�	(1)(p+, p−)ei �p+(x−y)−iω+(τx −τy )

× ei �p−(y−x′)−iω−(τy−τ ′
x ) d3 �p+ d3 �p−

�	(1)(x − y, y − x ′) = −i

2
( �∇y − �∇y′)y′→y[G(x, y ′)G(y, x ′) − F+(y ′, x ′)F(x, y)]

(3)

where G and F are the Green functions in the superconducting state, and the wide bars denote
averages over the impurity positions.

For calculating the response tensor Qαβ , we may define the function B(i)(ω′) as

B(i)(ω′) = ni

(2π)3

∫
|u( �p − �p′)|2 �	(i)( �p′

+, �p′
−) d3 �p′ (4)

where u( �p − �p′) is the impurity potential [2], and ni is the density of impurities.
To determine 	(1)(p+, p−), we have to know three further quantities that differ in the

diagram from 	(1)(p+, p−) by having different directions of the arrows on the electron line.
Each of these quantities corresponds to a special combination of G and F :

	(2)(x − y, y − x) = − i

2
(∇y − ∇y′)y→y′[F+(x, y ′)G(y, x ′) + G(y, x)F+(y ′, x ′)]

	(3)(x − y, y − x ′) = − i

2
(∇y − ∇y′)y′→y[G(y, x)G(x ′, y ′) − F+(x, y ′)F(y, x ′)]

	(4)(x − y, y − x ′) = − i

2
(∇y − ∇y′)y′→y[G(x, y ′)F(y, x ′) + F(x, y)G(x ′, y ′)].

(5)



Nonlocality and impurity effects on the magnetic penetration depth in d-wave superconductors 4579

With the help of Feynman diagrams, the equation for �	(1) is given by [2]
�	(1)(p+, p−) = �P{G(p+)G(p−) + F(p+)F+(p−)} + G(p+)G(p−)B(1)(ω)

− F+(p+)G(p−)B(2)(ω) − F(p+)F+(p−)B(3)(ω) − G(p+)F(p−)B(4)(ω).

(6)

Substituting equation (5) into (4) leads to a system of equations for the B(i)(ω). It can be
solved in general form only in the case of spherically symmetric scattering. The criterion as
to whether the superconductor is local or not is based on the concentration of impurities. At
small concentrations, the properties of a superconductor are close to those of a pure metal. We
shall assume that the impurity concentration is such that the superconductor has not become
London type. In this situation, for spherically symmetric scattering, by using

G(p) = − iω − Ḡω + ε

(iω − Ḡω)2 + ε2 + (�p + F̄+
ω )2

F+(p) = �p + F̄+
ω

(iω − Ḡω)2 + ε2 + (�p + F̄+
ω )2

(7)

where

Ḡω = ni

(2π)3

∫
|u( �p − �p′)|2G( �p′) d3 p′

F̄+
ω = ni

(2π)3

∫
|u( �p − �p′)|2 F+( �p′) d3 �p′

we may write

B(1)(ω) = −B(3)(ω) = �2
p

2τ [ω2 + �2
p + ( 1

2 �q · �v)2]
(√

ω2 + �2
p + 1

2τ

)
B(2)(ω) = B(4)(ω) = i�pω

2τ [ω2 + �2
p + ( 1

2 �q · �v)2]
(√

ω2 + �2
p + 1

2τ

) (8)

where the gap parameter in d-wave superconductors is given by �p = �0 cos 2ϕ (�0 is the
maximum gap parameter, and ϕ is the angular deviation of p̂ from the given node direction in
the basal plane), and τ is the relaxation time in the superconducting state.

If the electromagnetic response tensor Qαβ is diagonal, it is simply related to the
eigenvalues of the penetration depth tensor 4π

c Qαα(q) = λ−2
α , where λα is the penetration

depth for current flow in the direction α. By using equations (8) and (4) in equation (2), we
obtain the kernel Q(q) as

Q(q) =
{

1 + 3
4 T

∑
ω

∫
dε

[
((ε+ + iωγω)(ε− + iωγω) + �2

pω
2)

×
(

1 +
�2

p

2τ (ω2 + �2
p)

3/2γω

+
2�2

pω
2γ 2

ω

2τ (ω2 + �2
p)

3/2γω

)]

× 1

[ε2
+ + (ω2 + �2

p)γ
2
ω][ε2− + (ω2 + �2

p)γ
2
ω]

}
(9)

where γω = 1 + (2τ
√

ω2 + �2
p)

−1 and ε± = ε ± 1
2 �q · �v.

Here we encounter a formally divergent integral. After regrouping the terms in the curved
brackets, we cancel the divergent terms, and after some algebra we obtain

Q(q̃, T ) = 2πT
∑

ω

〈
p�2

11

�2
p

(ω2 + �2
p + α2)

(√
ω2 + �2

p + 1
2τ

)
〉

(10)
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where p�11 is the projection of p̂ on the boundary, α = (
qvF

2 ) p̂ · q̂ (q̂ is the unit vector
perpendicular to the boundary,and it gives the direction in which the penetration of the magnetic
field takes place), q̃ = λ0q , and

〈· · ·〉 = 1

π R2
f

∫ R f

0

∫ 2π

0
sin ϕ dϕ r dr .

We consider two different orientations of the magnetic field. First, the static magnetic
field is applied along the c-axis with a superconducting plane perpendicular to the c-axis. For
this particular geometry, both the vector potential �A and the screening supercurrent density
�J are parallel to the a-axis. In this situation α 
= 0, and equation (10) shows the effects

of nonlocality and impurity on the both penetration depths �λab(T ) and �λc(T ). Second,
in a different geometry where the boundary is parallel to the a–b plane ( �H parallel to the
boundary), the direction of penetration q̂ would be along the c-axis, i.e., perpendicular to p̂,
yielding α = 0; hence equation (10) shows the effects of impurity on both penetration depths.

Now we calculate the correction of Q(q̃, T ) in the limit of low temperatures, in the
presence of nonlocality and impurity. For this purpose Q(q̃, T ) may be written in terms of
Q(q̃, 0) as

Q(q̃, T ) = Q(q̃, 0) + δQ(q̃, T ) (11)

where

δQ(q̃, T ) = 2

{
δQ(0, T )

[
1 +

2

δQ(0, T )

∫ ∞

0
dω f (ω)

×
〈
2 p�2

11�
2
p

1

(ω2 − �2
p)

3/2

α2

ω2 − �2
p − α2

〉]}
(12)

with

δQ(0, T ) = 2
∫ ∞

0
f (ω) dω

〈
2 p�2

11�
2
p

1

(ω2 − �2
p)

3/2

1(
1 + 1

2τ
√

ω2−�2
p

)
〉
. (13)

Equation (12) can be written as

δQ(q̃, T ) = δQ(0, T ) F

(
q̃

t

)
(14)

where

F

(
q̃

t

)
= 1 +

2

δQ(0, T )

∫ ∞

0
f (ω) dω

〈
2 p�2

11�
2
p

1

(ω2 − �2
p)

3/2

α2

ω2 − �2
p − α2

〉
, (15)

and t = T/T ∗.
Close to the nodes, �p ≈ 2�0ϕ, and we have

δQ(0, T ) = −2T τ ln 2. (16)

It is noted that nonlocality parameter, α, appeared only in the function F(
q̃
t ), which is the

same as the result of Kosztin and Leggett [7], whereas the relaxation time τ appears only in
the function δQ(0, T ). It is noted that δQ(0, T ) is the same as that of Kosztin and Leggett
when τ → ∞. Here F(z) is a universal function which can be approximated by [7],

F(z) ≈
{

1 − c1z for z < 2
c2

z2
for z > 2

where c1 = 0.37, c2 = 1.05, z = q̃
t (T ∗ = ζ0

λ0
�0), and ζ0 is the coherence length.
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For specular and diffuse boundary scattering respectively we have [7]

�λspec(T )

λ0
= 2

π

∫ ∞

0
dq̃

[−δQ(q̃, T )]

(q̃2 + 1)2
(17)

�λdi f f (T )

λ0
= 1

π

∫ ∞

0
dq̃

[−δQ(q̃, T )]

q̃2 − 1
. (18)

Because in the range of temperatures T 
 T ∗, q̃ 
 1, q̃2 in the denominators of the above
equations can be neglected. However, t 
 1, and the upper limit of the integral is changed to
t [9]; hence finally we may write

�λspec(T )

λ0
= 4τ ln 2T

π

∫ t

0
dq̃

1 − 0.37 q̃
t + 1.052 t2

q̃2

(q̃2 + 1)2
.

By integrating we may obtain

�λspec(T )

λ0
= 7.52τ ln 2

π

T 2

T ∗ . (19)

The relaxation time, τ , for d-wave superconductors in the low-temperature limit, is given
by [8]

τ ≈ τn cos2 δN |cot gδN |
∣∣∣∣�0

E

∣∣∣∣ 1

|ln( 2�0
E )| (20)

where δN is the phase shift; τn is the relaxation time in the normal state, and in the Born
approximation is given by [8]

τ−1
N = ni mpF

(2π)2

∫
|u(θ)|2 d� (21)

where pF is the Fermi wavevector.
If we depart from the Born approximation, we have to take into account the diagrams

containing several crosses per impurity atom. It can be shown that the resulting change is
simply the replacement of the Born amplitude u(θ) by the total scattering amplitude tN :

τ−1
N = 2πni N(0)|tN |2 (22)

where N(0) = mpF

2π2 is the density of quasi-particle states at the Fermi surface for a single spin;
tN is the total scattering amplitude, and is given by [8]

|tN | = sin δn

π N(0)
. (23)

For E 
 �0, one may finally write

τ ≈ N(0)

2ni
(cot g3δN )

�0

T
. (24)

By substituting equation (24) into equation (19), we obtain

�λspec(T )

λ0
= 3.8 ln 2�0

π

N(0)

ni
cot g3δN

T

T ∗ . (25)

A similar calculation in the case of a diffuse boundary yields

�λdi f f (T )

λ0
≈ 1

2

�λspec(T )

λ0
= 1.9 ln 2�0

π

N(0)

ni
cot g3δN

T

T ∗ . (26)

This behaviour of the relaxation time gives rise to transport coefficients that are in
qualitative disagreement with experiments [4]. Schmitt et al [5], have performed calculations
for the transport properties of anisotropic superconductors assuming the electron impurity
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scattering to be close to resonant, and therefore not treatable in the Born approximation. They
find at low energies τ ∝ τN and nearly equal to τN in the energy region above the pair-breaking
regime relevant to most of the existing experiments. By using this result, for the penetration
depth we may write

�λspec(T )

λ0
= 2�λdi f f (T )

λ0
≈ 7.5τN ln 2

π

T 2

T ∗ (27)

which is in agreement with the experimental results [6, 10, 11].
In the limit of τ → ∞ (pure superconductors), equation (10) shows only the effects of

nonlocality on the temperature dependence of the penetration depth, and this is consistent with
the results of Kosztin and Leggett [7].

In the limit of α → 0 (local limit), equation (10) shows only the effects of impurity on
the penetration depth. In this case we have

Q(q̃, T ) = 2πT
∑

ω

〈
p�2

11
1

(ω2 + �2
p)

�2
p(√

ω2 + �2
p + 1

2τ

)
〉
. (28)

When 1
τ

→ 0, the formula transforms to the usual London-type expression:

λ(T ) =
(

m

4π Ns e2

)1/2

, (29)

where Ns is the number of supercomputing electrons.

3. Discussion and concluding remarks

We calculated Q(q̃, T ) in the presence of nonlocality and impurity. We conclude that in the
limit of τ → ∞ our results are the same as those of Kosztin and Leggett. In the limit of α → 0
(local limit) the effects of impurity only appeared in the temperature dependence of �λ(T ).
In the presence of both nonlocality and impurity the nonlocal effects are in fact masked by
impurities at low temperatures.

We showed that if electron–impurity scattering is treated in the Born approximation,
�λ(T ) varies linearly with temperature which is in qualitative disagreement with experiments.
On the other hand, if instead of using the Born approximation we assume that multiple
interactions of a quasi-particle with impurities are important, which corresponds to the phase
shift in the normal state being close to π

2 , the qualitative temperature dependence of �λ(T) goes
to T 2, which is in agreement with experimental results. If resonant scattering is responsible for
the quadratic temperature dependence of λ in an impure sample, in the presence of nonlocality
and of impurity effects, nonlocal effects are in fact completely masked by impurities.
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